
25 Key Runes
=/ skin hoon hoon =/ a 1 <rest-of-hoon>
 define a variable of value hoon with name skin
|= spec hoon |= a=@rs (add:rs a .1.0)
 produce a gate (one-armed core with battery hoon and sample spec)
|- hoon
 produce a trap (one-armed core with battery hoon and arm $) and kick it
|_ spec alas (map term tome) --

 produce a door (a generalized gate, a core with sample but many arms) which accepts sample spec
|% (unit term) (map term tome) --

 produce a generic core (cell of [battery payload])
%- hoon hoon (add 1 1)
 call a gate hoon (one-armed core) with sample hoon
%~ wing hoon hoon `@t`~(x ne 0xf)
 evaluate an arm wing in a door (resolve the wing as a gate and call it)
%= wing (list (pair wing hoon) $(count +(count))
 resolve a wing wing with changes; frequently used with $ to iterate a trap forward as a loop
++ term hoon
 produce a normal arm with name term and content hoon
+$ term spec
 produce a structure arm (type definition) with name term and mold spec
$= skin spec foo=baz
 assign a name skin to a hoon (“wrap a face around a hoon”)
$_ hoon _foo
 normalize structure to example
^- spec hoon ^- @ud a
 typecast explicitly
^+ hoon hoon ^+ .1 a
 typecast by example
?: hoon hoon hoon ?:((gth:rs a .0) a (sub:rs .0 a))
 branch conditionally on test; if hoon then hoon else hoon
?. hoon hoon hoon ?.((gth:rs a .0) (sub:rs .0 a) a)
 reversed conditionality; branch conditionally on test; if hoon then hoon else hoon
?= spec wing
 test pattern match, whether wing is type spec
?> hoon hoon
 assert positively that hoon and hoon match
.^ spec hoon .^(arch %cy %)
 scry into vane namespace per instruction hoon and apply mold spec to the result
:- hoon hoon :- %say foo
 construct a cell (2-tuple); see also n-tuple constructor :*
;< mold hoon hoon hoon
 monadic bind, defer completion of hoon until after hoon has resolved; hoon is an adapter
/+ path /+ generators
 imports a file from lib/path (* pinned with no face, = with specified face)
~& hoon ~& [foo <bar> <baz>]
 side effect: output value of hoon to stderr
!> hoon
 wrap a noun hoon in its type; frequently used as the “type spear” -:!>
!!
 crash (no children); useful for stubbing out branches in development

