
Debugging Hoon
Error Interpretation Mitigation

HOON ERRORS
dojo: hoon expression failed input hoon failed to compute correct expression
find.foo failure to locate a limb in subject check the wing (limb search path); make sure limb exists
find.$ failure to call item as gate ensure that the code is calling a gate
find-fork insufficient resolution in typechecker use ?> to assert type before use
fish pattern matching
 fish-core attempting to match a core as a mold don’t use a core with ?= pattern-matching
 fish-loop recursive mold definition don’t use mold types like list with ?= pattern matching
mint/play conversion of AST to Nock
 mint-lost a branch in a conditional can never be reached make sure all branches are reachable
 mint-nice failure to cast
 mint-vain hoon never executed; impossible match in ?-, ?+, ?~, ?= make sure all branches are reachable
mull type inference for wet cores
 mull-bonk various pattern matching errors
 mull-grow failure to compile at wet gate callsite
 mull-nice type nesting errors
need/have expected mold & actual received mold check the structure and type of molds; cast auras
nest-fail failure to match call signature of gate
generator-build-fail Dojo unable to compile generator into valid program check structure of Hoon in generator file
syntax error malformed Hoon syntax check your

RUNTIME ERRORS
bail:exit semantic failure
bail:evil bad crypto
bail:intr interrupt
bail:fail execution failure
bail:foul assertion of failure
bail:meme out-of-memory
bail:need network block
bail:oops assertion failure
bail:time operation timeout
loom:corrupt memory corruption
pier: serf unexpectedly shut down runtime crash debug on basis of other error messages

COMMON BUGS
Aura mismatches mint-nice is the characteristic error type. Pass thru empty aura b/f final cast: ^-(@ud ^-(@ 'foo'))
Generator issues Check children of each rune to make sure they match.

Check return types of expressions (or limit with ?>/^-).
Shadowed faces Variable names (such as json) covered in the subject by

another limb name.
Use ^ ket to find the nth match or change limb name.

STRATEGIES
Stack debugging. Turn this on with !: zapcol; !. zapdot turns this off again. The output on a crash returns the stack and the current file/line number.

Employ ~& sigpam printf-style debugging freely. This should have no effect on code execution as long as what you are printing isn’t a complicated
expression.

Bisection search. Stub out limbs you aren’t currently testing with the crash rune !! zapzap. Use this to rapidly target where your code is going awry.

Build it again. Remove all of the complicated code from your program and add it in one line at a time. For instance, replace a complicated function with either
a ~& and !!, or return a known static hard-coded value instead. That way as you reintroduce lines of code or parts of expressions you can narrow
down what went wrong and why.

Double-check the documentation and source for the gate in question. Make sure that each element of the sample (argument) does what you think it does.
Make sure that you have a good grasp on any strange terminology employed.

DEBUGGING TOOLS
~ sig tools ~& sigpam emits printed messages as a side effect

~| sigbar turns on a tracing message (for stack debugging)
~_ sigcab produce a developer-formatted tracing message
~! sigzap print type on compilation failure

! zap tools !: turn on stack debugging !. turn off stack debugging
%gall %dbug app |start %dbug

Navigate to http://localhost:8888/debug (with the appropriate ship URL)
Ship maintenance |pack compact memory

|meld unify memory (eliminate redundant subtrees)
:goad %force force %gall to rebuild agents

Profiling flags -j create a JSON trace file in .urb/put/trace
-P turn on profiling

Debugging flags Compile with enableDebug = true in default.nix.
Run with -g flag to monitor memory behavior.

