
Urbit Hoon Reference Card %140

| bars make cores
|_ spec alas (map term tome)

produces a door (a core with sample)
|% (unit term) (map term tome)

produces a core (battery and payload)
|@ (unit term) (map term tome)

produces a wet core (battery and payload)
|: [hoon hoon]

produces a gate with a custom sample
|. hoon

produces a trap (a core with one arm)
|- hoon

produces a trap (a core with one arm) and evaluates it
|^ hoon (map term tome)

produces a core whose battery includes a $ arm and computes the latter
|~ [spec value]

produces an iron gate
|* [spec value]

produces a wet gate (a one-armed core with sample)
|= [spec value]

produces a dry gate (a one-armed core with sample)
|? hoon

produces a lead trap
|$ (lest term) spec

produces a mold
$ bucs form molds

$@ [spec spec]
structure that normalizes a union tagged by head atom

$_ hoon
structure that normalizes to an example _foo

$: (list spec)
forms a cell type (tuple) [a=foo b=bar c=baz]

$% (list spec)
structure that recognizes a union tagged by head atom (e.g., a list of named parameters)

$< [spec spec]
structure from filter (excluding)

$> [spec spec]
structure from filter (requiring)

$| [spec hoon]
structure with verification

$& [spec hoon]
repaired structure

$^ hoon
structure that normalizes a union tagged by head depth (cell)

$~ [hoon spec]
defines a custom type default value

$- [spec spec]
structure that normalizes to an example gate

$= [skin spec]
structure that wraps a face around another structure foo=bar

$? (list spec)
forms a type from a union of other types ?($foo $bar $baz)

Assembly 2021 Page 1 of 8

Urbit Hoon Reference Card %140

$. [spec (map term spec)]
structure as read–write core

$; hoon
manual structure

% cens put the fun in function
%_ [wing (list (pair wing hoon))]

resolves a wing with changes, preserving type
%. [hoon hoon]

calls a gate, inverted
%^ [hoon hoon hoon hoon]

calls a gate with triple sample
%+ [hoon hoon hoon]

calls a gate with a cell sample
%- [hoon hoon]

calls a gate (fun arg)
%: [hoon (list hoon)]

calls a gate with many arguments
%~ [wing hoon hoon]

evaluates an arm in a door ~(arm core arg)
%* [wing hoon (list (pair winghoon))]

evaluates an expression, then resolves a wing with changes
%= [wing (list (pair wing hoon))]

resolves a wing with changes foo(x 1, y 2, z 3)

: cols make cells
:_ [hoon hoon]

constructs a cell, inverted
:^ [hoon hoon hoon hoon]

constructs a cell, 4-tuple [a b c d]
:+ [hoon hoon hoon]

constructs a cell, 3-tuple [a b c]
:- [hoon hoon]

constructs a cell, 2-tuple [a b], a^b (a^b^c)
:~ (list hoon)

constructs a null-terminated list ~[a b c]
:* (list hoon)

constructs an n-tuple [a b c d e …]
:: marks a comment (digraph, not rune)

. dots nock
.+ atom

increments an atom using Nock 4 +(42)
.* [hoon hoon]

evaluates using Nock 2
.= [hoon hoon]

tests for equality using Nock 5 =(a b)
.? hoon

tests for cell or atom using Nock 3
.^ [spec hoon]

loads from namespace using Nock 12
-/= terminators terminate
-- terminates core expression (digraph, not rune)
== terminates running series of Hoon expressions (digraph, not rune)

Assembly 2021 Page 2 of 8

Urbit Hoon Reference Card %140

^ kets cast
^| hoon

converts a gold core to an iron core (invariant)
^. [hoon hoon]

typecasts on value
^- [spec hoon]

typecasts by explicit type label `foo`bar
^+ [hoon hoon]

typecasts by inferred type (a fence)
^& hoon

converts a core to a zinc core (covariant)
^~ hoon

folds constant at compile time
^= [skin hoon]

binds name to a value foo=bar
^? hoon

converts a core to a lead core (bivariant)
^* spec

bunt, produces default mold value *foo
^: spec ,foo

produces a ‘factory’ gate for a type (switch from regular parsing to spec/type parsing)
~ sigs hint

~| [hoon hoon]
prints in stack trace if failure

~$ [term hoon]
profiler hit counter

~_ [hoon hoon]
prints in stack trace, user-formatted

~% [chum hoon tyre hoon]
registers jet

~/ [chum hoon]
registers jet with registered context

~< [$@(term [term hoon]) hoon]
raw hint, applied to product (“backward”)

~> [$@(term [term hoon]) hoon]
raw hint, applied to computation (“forward”)

~+ [@ hoon]
caches a computation

~& [@ud hoon hoon]
prints (used for debugging)

~? [@ud hoon hoon hoon]
prints conditionally (used for debugging)

~= [hoon hoon]
detects duplicate

~! [hoon hoon]
prints type if compilation failure

; mics make
;: [hoon (list hoon)]

calls a binary function as an n-ary function :(fun a b c d)
;/ hoon

(Sail) yields tape as XML element

Assembly 2021 Page 3 of 8

Urbit Hoon Reference Card %140

;< [spec hoon hoon hoon]
glues a pipeline together (monadic bind)

;~ [hoon (list hoon)]
glues a pipeline together with a product-sample adapter (monadic bind)

;; [spec hoon]
normalizes with a mold, asserting fixpoint

;+
(Sail) makes a single XML node

;*
(Sail) makes a list of XML nodes from Hoon expression

;= marl:hoot
(Sail) makes a list of XML nodes

= tises alter
=| [spec hoon]

combines default type value with the subject
=. [wing hoon hoon]

changes one leg in the subject
=? [wing hoon hoon hoon]

changes one leg in the subject conditionally
=^ [skin wing hoon hoon]

pins the head of a pair; changes a leg with the tail
=: [(list (pair wing hoon)) hoon]

changes multiple legs in the subject
=/ [skin hoon hoon]

combines a named noun with the subject
=; [skin hoon hoon]

combines a named noun with the subject, inverted
=< [hoon hoon]

composes two expressions, inverted foo:bar
=> [hoon hoon]

composes two expressions
=- [hoon hoon]

combines a new noun with the subject
=* [(pair term (unit spec)) hoon hoon]

defines an alias
=, [hoon hoon]

exposes namespace (defines a bridge)
=+ [hoon hoon]

combines a new noun with the subject
=~ (list hoon)

composes many expressions
? wuts test

?| (list hoon)
logical OR (loobean) |(foo bar baz)

?: [hoon hoon hoon]
branches on a boolean test

?. [hoon hoon hoon]
branches on a boolean test, inverted

?< [hoon hoon]
negative assertion

?> [hoon hoon]
positive assertion

Assembly 2021 Page 4 of 8

Urbit Hoon Reference Card %140

?- [wing (list (pair spec hoon))]
switches against a union, no default

?^ [wing hoon hoon]
branches on whether a wing of the subject is a cell

?= [spec wing]
tests pattern match

?# [skin wing]
tests pattern match

?+ [wing hoon (list (pair spec hoon))]
switches against a union, with default

?& (list hoon)
logical AND (loobean) &(foo bar baz)

?@ [wing hoon hoon]
branches on whether a wing of the subject is an atom

?~ [wing hoon hoon]
branches on whether a wing of the subject is null

?! hoon
logical NOT (loobean) !foo

! zaps run wild
!:

turns on stack trace
!.

turns off stack trace
!, [*hoon hoon]

emits AST of expression (use as !, *hoon expression)
!; [hoon hoon]

emits the type for an expression using the type of type
!> hoon

wraps a noun in its type
!< hoon

lift dynamic value into static context
!@ [(list wing) hoon hoon]

!= hoon
makes the Nock formula for a Hoon expression

!? [$@(@ {@ @}) hoon]
restricts Hoon version

!! ~
crashes

/ fases file (+ford arm of %clay)
/? foo

pin a version number
/- foo, *bar, baz=qux

imports a file from the sur directory (* pinned with no face, = with specified face)
/+ foo, *bar, baz=qux

imports a file from the lib directory (* pinned with no face, = with specified face)
/= clay-raw /sys/vane/clay

imports results of user-specified path wrapped in face
/% %mark

imports mark definition from mar/
/$ %from %to

imports mark conversion gate from mar/

Assembly 2021 Page 5 of 8

Urbit Hoon Reference Card %140

/* myfile %hoon /gen/myfile/hoon

imports the contents of a file in the desk converted to a mark (build-time static data)
/~ face type /path

imports contents of a directory under face=(map @ta type)
+ luses arm cores

+|

labels a chapter (produces no arm)
+$ [term spec]

produces a structure arm (type definition)
++ [term hoon]

produces a (normal) arm
+* [term term spec]

produces a type constructor arm

syntax
+1:[%a [%b %c]] [%a [%b %c]] .:[%a [%b %c]] [%a [%b %c]]

+2:[%a [%b %c]] %a -:[%a [%b %c]] %a

+3:[%a [%b %c]] [%b %c] +:[%a [%b %c]] [%b %c]

+4:[%a [%b %c]] %ride failed -<:[%a [%b %c]] %ride failed

+6:[%a [%b %c]] %b +<:[%a [%b %c]] %b

+7:[%a [%b %c]] %c +>:[%a [%b %c]] %c

&n nth element lark syntax equivalents
|n tail after nth element +1 +5 ->

+2 - +6 +<
<[1 2 3]> renders list as a tape +3 + +7 +>
>[1 2 3]< renders list as a tank +4 -< +8 -< -

. current subject ^face face in outer core (^^face)
+ +:. ..arm core in which ++arm is defined
- -:. , ,. strip the face

+> +>:.
a.b.c limb search path -:!> type spear, use as -:!>(.3.14)

~ 0 (nil) eny entropy `a [~ a]
%.y & yes/true/0 now current time ~[a b c] [a b c ~]
%.n | no/false/1 our ship [a b c]~ [[a b c] ~]

%a constant a/b [%a b]
$ empty term (@tas)

elementary molds
'urbit'cord, atom @t * noun
"urbit"tape or list of characters @ atom (atom)
 =wire shadow type name (in defn) ^ cell
/path path name ? loobean

% current path ~ null

Assembly 2021 Page 6 of 8

Urbit Hoon Reference Card %140

@p notation
@ Empty aura
@c Unicode codepoint ~-~45fed.
@d Date
 @da Date, absolute ~2020.12.25..7.15.0..1ef5
 @dr Date, relative ~d71.h19.m26.s24..9d55
@f Loobean (for compiler, not castable) &
@i Internet address
 @if IPv4 address .195.198.143.90
 @is IPv6 address .0.0.0.0.0.1c.c3c6.8f5a
@n Nil (for compiler, not castable) ~
@p Phonemic base ~laszod-dozser-fosrum-fanbyr
@q Phonemic base, unscrambled (used with Urbit HD wallet) .~laszod-dozser-dalteb-hilsyn
@r IEEE-754 floating-point number
 @rh Floating-point number, half-precision, 16-bit .~~3.14
 @rs Floating-point number, single-precision, 32-bit .3.141592653589793
 @rd Floating-point number, double-precision, 64-bit .~3.141592653589793
 @rq Floating-point number, quadruple-precision, 128-bit .~~~3.141592653589793
@s Integer, signed (sign bit low)
 @sb Signed binary --0b10.0000
 @sd Signed decimal --1.000
 @sv Signed base-32 --0v201.4gvml.245kc
 @sw Signed base-64 --0w2.04AfS.G8xqc
 @sx Signed hexadecimal --0x2004.90fd
@t UTF-8 text (cord) 'urbit'
 @ta ASCII text (knot) ~.urbit
 @tas ASCII text symbol (term) %urbit
@u Integer, unsigned
 @ub Unsigned binary 0b10.1011
 @uc Bitcoin address 0c1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa
 @ud Unsigned decimal 8.675.309
 @ui Unsigned decimal 0i123456789
 @uv Unsigned base-32 0v88nvd
 @uw Unsigned base-64 0wx5~J
 @ux Unsigned hexadecimal 0x84.5fed

Capital letters at the end of auras indicate the bitwidth in binary powers of two, starting from A.
@ubD signed single-byte (8-bit) decimal
@tD 8-bit ASCII text
@rhE half-precision (16-bit) floating-point number
@uxG unsigned 64-bit hexadecimal
@uvJ unsigned 512-bit integer (frequently used for entropy eny)

Auras are non-coercive, but conversions may have to go via the empty aura: ^-(@ud ^-(@ 'foo')).

Assembly 2021 Page 7 of 8

Urbit Hoon Reference Card %140

Nock 4K

A noun is an atom or a cell. An atom is a natural number. A cell is an ordered pair of nouns.

Reduce by the first matching pattern; variables match any noun.

nock(a) *a
[a b c] [a [b c]]

?[a b] 0
?a 1
+[a b] +[a b]
+a 1 + a
=[a a] 0
=[a b] 1

/[1 a] a
/[2 a b] a
/[3 a b] b
/[(a + a) b] /[2 /[a b]]
/[(a + a + 1) b] /[3 /[a b]]
/a /a

#[1 a b] a
#[(a + a) b c] #[a [b /[(a + a + 1) c]] c]
#[(a + a + 1) b c] #[a [/[(a + a) c] b] c]
#a #a

[a [b c] d] [[a b c] *[a d]]

*[a 0 b] /[b a] slot operator (noun at tree address)
*[a 1 b] b constant
*[a 2 b c] *[*[a b] *[a c]] evaluate
[a 3 b] ?[a b] test for atom
[a 4 b] +[a b] increment
[a 5 b c] =[[a b] *[a c]] distribution

*[a 6 b c d] *[a *[[c d] 0 *[[2 3] 0 *[a 4 4 b]]]] if-then-else
*[a 7 b c] *[*[a b] c] compose
*[a 8 b c] *[[*[a b] a] c] extend
*[a 9 b c] *[*[a c] 2 [0 1] 0 b] invoke
*[a 10 [b c] d] #[b *[a c] *[a d]] edit noun

*[a 11 [b c] d] *[[*[a c] *[a d]] 0 3] hint
*[a 11 b c] *[a c]

*a *a interpret

Assembly 2021 Page 8 of 8

